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Motivation and Problem Statement

Border Gateway Protocol (BGP) is the Internet's routing foundation
e Enables autonomous systems (ASes) to exchange reachability information
e Critical for global Internet connectivity

Security vulnerabilities
® LaCkS bu”t_ln Securlty meChaﬂlsmS ........................................................... >
e Vulnerable to route hijacking, route leaks, prefix hijacking
e Attacks can cause service disruptions and data interception

Real-world impact
e 2025: Cloudflare misconfiguration
e 2022: Russian Twitter BGP Hijack
e 2008: Pakistan Telecom hijacked YouTube traffic

No Authentication

Anyone can announce routes

v

No Encryption

Traffic can be intercepted or altered

v

No Route Validation

Leads to hijacks or leaks
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Key Challenges in BGP Anomaly Detection:

Data authenticity
Issues

Highly imbalanced
datasets

Limit
complexity explainability
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Related Work and Limitations

Study Approach Limitations

- ipel i Limited generalization; models
Allahdadi et al. (2017) Three-phase pipeline with g

One-Class SVM trained per specific event
Tokenization with deep SMOTE introduces artifacts;
rarketal (2029 learning Nno per-class analysis

Simulation-based only; lacks

Nassir et al. (2024) Hybrid SGD-RF model real-world validation

Hybrid MAD with ML Overfitting risk due to resampling;

Romo-Chavero et al. (2025) dependence on thresholds

classifiers

Gap
*Need for a feature selection approach that preserves data authenticity while
enhancing model explainability Page 4 of 15



Methodology Overview

Four-stage approach

‘ 1.Dataset preparation and balancing

‘ 2.Feature selection using six algorithms

3.Hybrid feature ensemble with 75%
‘ agreement threshold

‘ 4.Evaluation using Random Forest and
XGBoost

BGP Anomaly Detection Workflow
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v
Equal Sampling

Data Preparation

Sampling Strategy

v

Proportional Sampling

Feature Selection
(Six Algorithms)

Modeling
(RF & XGBoost)

v

Performance Evaluation
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Selected Features Visualization

Top Hybrid Features (Threshold 75% - Min 3 Lists)
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Machine Learning Models and Experimental Design

Classification Algorithms

Random Forest

e Ensemble approach: 100 decision trees
with bagging

e Split criterion: Gini impurity
optimization

 Key advantage: Native feature
ImMmportance via mean decrease in
impurity

 Sequential approach: Gradient-based
tree construction

e Regularization: L1/L2 for generalization

 Key advantage: State-of-the-art on
tabular data

Experimental Setup (Binary Classification Scenarios)
e Normal vs. Class 1 (indirect attack), Class 2 (direct
attack), Class 3 (Outage), and All Anomalies

Evaluation Framework
e Parameters: Default configuration to isolate feature
selection effects
e Hyperparameter tuning yields 0.26-1% additional F1-

score gains

Class-Specific Insights
e Class 2 (direct): Benefits from deeper trees, stronger
regularization
e Class 3 (outages): Optimal with moderate depth,
lower regularization
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Quantitative Performance Analysis

Classification Performance Analysis
@ Accuracy-Full Feature set(%) @ Accuracy-Hybrid Feature set(%)
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Model Interpretability

Feature Importance Distribution

Class SHAP (XGBOOST) Gini (Random Forest) Consensus Features
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Dimensionality Analysis

Dimensionality Reduction Analysis
e Principal Component Analysis:
1.22 to 26 principal components explain 99% of variance
2.Significant dimensionality reduction without information loss

e t-Distributed Stochastic Neighbor Embedding (t-SNE):
1.Enhanced class separability with hybrid features

Full Featura Sat t-SNE Visualization: Feature Set Comparison Hybrid Feature Set
(Weak cluster boundaries) (Pronounced separation)
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Pareto Analysis - Balancing Performance & Efficiency

Pareto Efficiency Analysis
 Feature Selection Impact(Left Graph): Hybrid features dominate - better accuracy
AND faster!

« Hyperparameter Optimization(Right Graph): Trade-off +0.3% accuracy for 1.7x
Inference time
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Ablation Analysis and Computational Efficiency

Top-N Feature Analysis

@ XGCBoost F1 (%) @ Random Forest F1 (%)
100

Computational Efficiency Gains
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48 > 25 Features (47.9% reduction):
e XGBoost: 36.9% faster inference
(0.0176s » 0.0111s)
e Random Forest: 9.6% faster
(0.0291s » 0.0263s)
e Training: 20-26% faster across all
models
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Critical Feature Impact

Most Important Features (by removal impact):
e dups: -2.10% F1 (most critical)
e origin_2: -1.31% F1 (origin stability)

e rare_ases_avg: -0.66% F1 (despite low variance!) Page 12 of 15



Dimensionality Reduction

e ENnsemble approach identifies 25
X N optimal features with 47.9%
O dimensionality reduction

lusi d Performance and Efficiency
Conclusions an Improvements

Research O « XGBoost: 89.7% accuracy
Contributions .-' e Random Forest: 88.0% accuracy
y e 30.9% faster inference time

Explainability
e SHAP/Gini consensus features
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Methodological Extension
e Multiclass classification framework
for simultaneous detection and
categorization
e Implement various network
scenarios using Scapy.

e Conduct the experiment using
Future Research , neural network-based algorithms
Directions such as LightGBM.

.'O,.

Operational Deployment

e Real-time system implementation with
. sliding window feature computation
RETT— y e Integration with RPKI validation and
automated mitigation systems
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