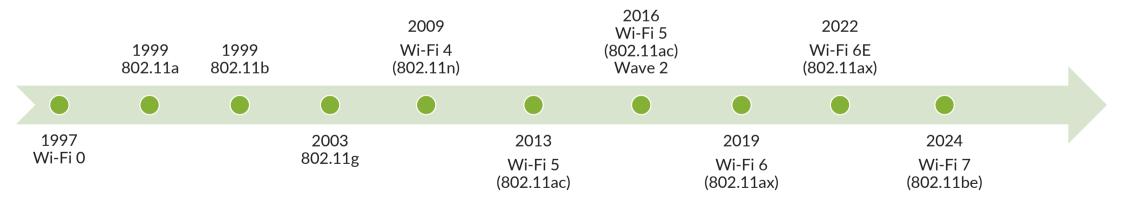
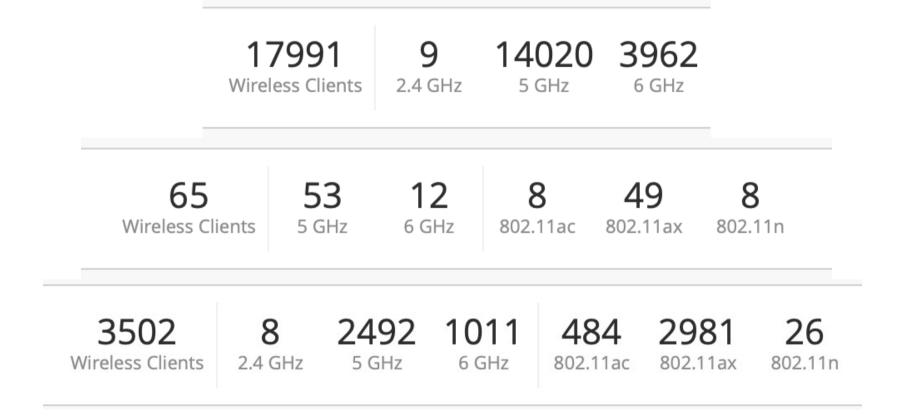


Introducing the Power and Scale of Wi-Fi 7



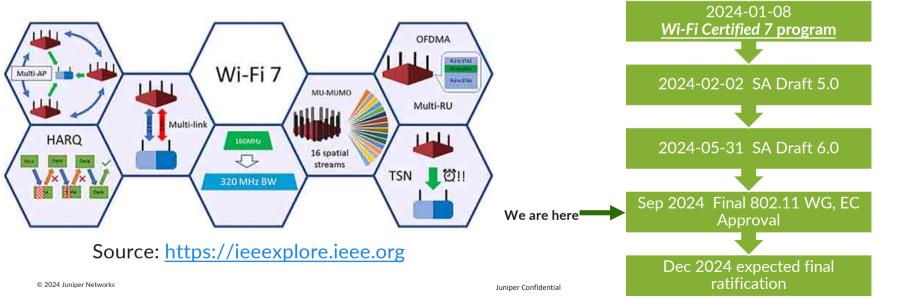
José Fidel Tomás Consulting Engineer Specialist - EMEA Juniper Networks


Wi-Fi standards over the years

- Several Wi-Fi iterations over 4-6 year intervals
- Intermittent Wi-Fi 6E update
- Update as Extremely High Throughput from High Efficiency

6 GHz Adoption 20-30% in some Environments

Juniper Confidential



Wi-Fi 7

Wi-Fi 7 Timeline

- 802.11be still being finalized
- Early Wi-Fi 7 certification release
- Technical requirements complete, pending final approval phase

JUNIPER

Wi-Fi 7 Innovations

2.4GHz + 5GHz + 6GHz
320 MHz - 16SS
4096 QAM
Multi-Link Operation

46 Gbps (16SS – 320 MHz)

Enterprise Wi-Fi 7 APs likely to max out at a Data Rate of

26 Gbps

Let's get slightly more realistic 2SS Data Rates @ m13

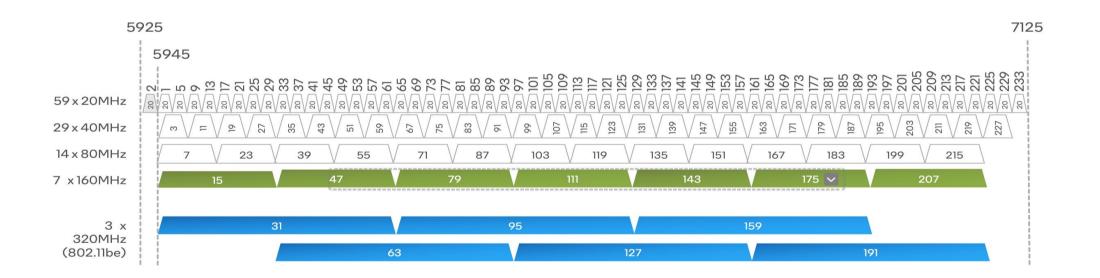
80 MHz = 1441 Mbps 40 MHz = 688 Mbps 20 MHz = 344 Mbps

(Best case single client throughput – usually 50-60% of Data Rate)

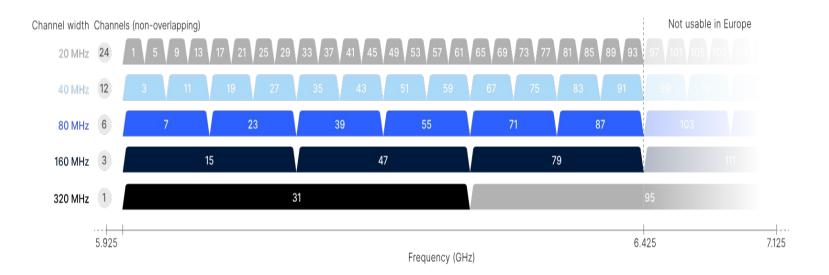
Juniper Confidential

16 Spatial Streams – For up to 16×16 MIMO

- 802.11be doubles spatial streams up to 16 streams therefore, double throughput compared to 8 stream 802.11ax
- improve spectral efficiency with Multi-User (MU) MIMO support for both Downlink and Uplink MU-MIMO



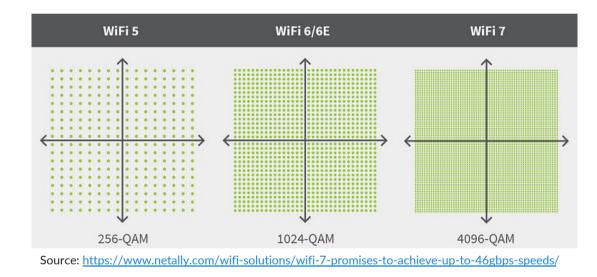
Contiguous and non-contiguous bands - US


- Support for extra-wide 320 MHz channels in the 6 GHz band
- 6 overlapping 320 MHz channels and 3 non-overlapping channels (US)

JUNIPEr.

Contiguous and non-contiguous bands – Europe

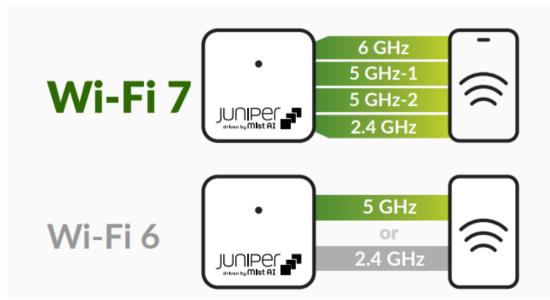
In Europe due to only 1 320MHz channel used only in non-enterprise consumer devices or corner case by using Multi RU and Puncturing



Increased modulation rate

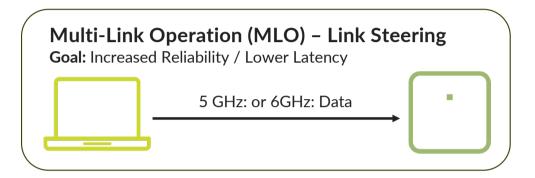
• 1024 [10 bits] -> 4096-QAM (4K-QAM) [12 bits]

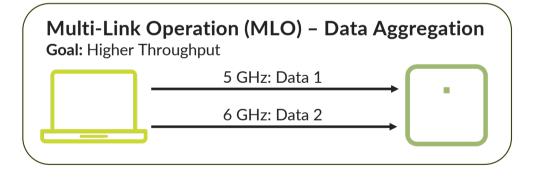
- 20% higher transmission - optionally supported by EHT

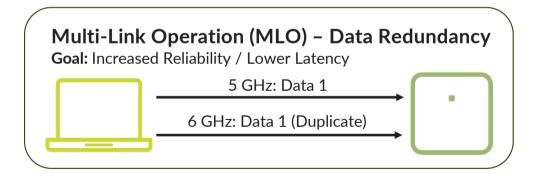

Demands higher performing radio circuitry, most effective only in the 6 GHz band over short distances and requires the use of antenna beamforming to mitigate path loss

Multi-Link Operation (MLO)

Accepted on Wi-Fi 7 "Multi-Link Devices" (MLD)


- Significantly higher throughput
- Lower Latency (theoretically up to 1ms)
- Enhanced reliability




JUNIPer.

Highlight feature but requires adoption/maturity phase

Multi-Link Operation (MLO)

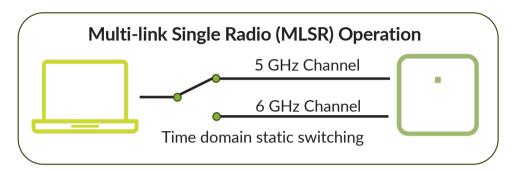
JUNIPer.

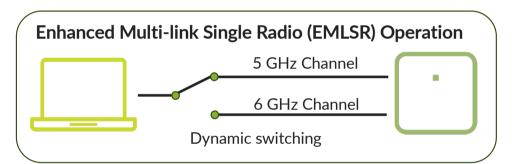
Multi-Link Operation (MLO)

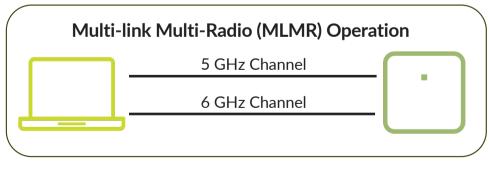
Link Switching

Multi-link single radio (MLSR): Lower Latency

- MLO, but TX/RX over one link at a time by switching links (bands)
- Requires one radio on client

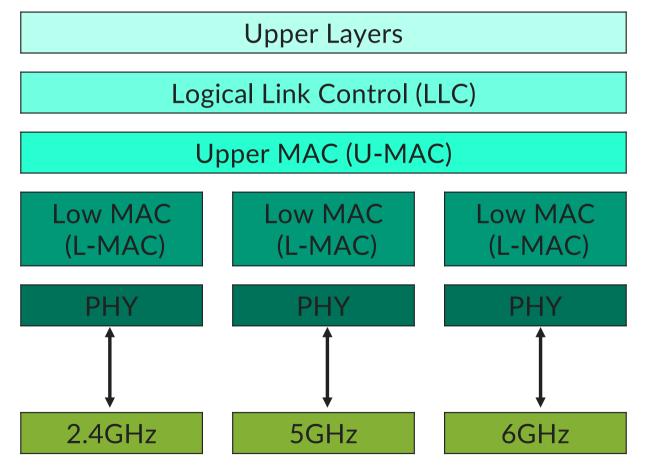

Enhanced multi-link single radio (EMLSR): Lowest Latency


- Same as MLSR, but can listen over multiple links simultaneously
- Requires one radio on client


Multi-Link Concurrent

Multi-link Multi-Radio (MLMR): Higher Throughput

- TX/TX, RX/RX, and TX/RX over multiple radios
- Non-Simultaneous MLMR: Constrained by in-device TX/RX interference for TX/TX and RX/RX over multiple links
- Simultaneous MLMR: Simultaneous transmit and receive (or STR) can support TX/RX over multiple links
- Enhanced MLMR: RX/TX chain switching



© 2024 Juniper Networks

Juniper Confidential

Multi-Link Operation (MLO) – Two MAC layers

MLO introduces a "higher level" MAC Address across the radios in a Wi-Fi 7 **MLD** (Multi-Link Device)

© 2024 Juniper Networks

Juniper Confidential

JUNIPer.

State of MLO – Sept 2024

- Windows 11 -> Requires 24H2
 - Intel BE200 EMLSR
 - QCA Fastconnect 7800 STR MLMR (2.4/5/6) and EMLSR
- Android
 - Android 13 first support, but Android 14 is better (link reconfiguration, use MLD in roaming algorithm)
 - Pixel 9 STR MLMR (2.4/5/6) and EMLSR Wi-Fi 7 (802.11be) with 2.4GHz+5GHz+6GHz, 2x2+2x2 MIMO
 - Pixel 8 STR MLMR (2.4 + 5/6) and EMLSR (
 - Samsung S24 Ultra STR MLMR (2.4 + 5/6) and EMLSR
 - One Plus 11 STR MLMR (2.4 + 5/6) and EMLSR
- Apple
 - iPhone 16 Wi-Fi 7 (802.11be) with 2x2 MIMO not Wi-Fi CERTIFIED 7 yet
- Android MLO Doc
 - https://source.android.com/docs/core/connect/wifi-7

Getting Ready For Wi-Fi 7

Making sure your Infrastructure is ready for Wi-Fi 7

- Device Support
- Multi-Gig Switching
- Powering Devices
- Transmit Power
- Security (WPA3 Requirement)

Not all Certified devices are equal

Currently Certified Devices

- 11x Computer & 1x TV Chipsets
- 3x Phones & 1x Tablet:
 - Google Pixel 8/Pro (GKWS6, G9BQD /G1MNW) 802.11be but not WFA Wi-Fi 7 certified
 - Samsung S24 Ultra (SM-S928U) but not Samsung Z Fold 6 with same chipset not Wi-Fi 7 certified

But

- 62x Routers & 9x Other devices
- Signs for Wi-Fi 7 market still in infancy
- Example Phase 1 devices:
 - No PC Intel chipset: STR (Simultaneous Transmit and Receive)
 - Missing Compressed Block Ack (buffer size 512), MCS 12-13
 - Triggered uplink access optimization

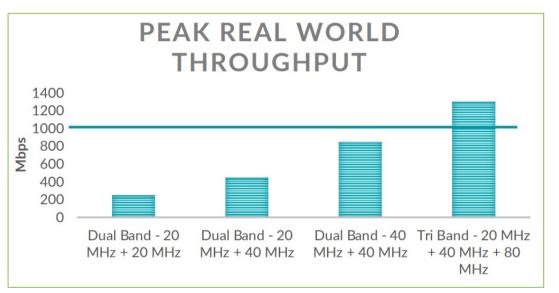
Product Finder Results | Wi-Fi Alliance

Advertised TID-to-link mapping A-MPDU with A-MSDU Beamforming sounding BSS critical update Compressed Block Ack Rx (buffer size 256) Compressed Block Ack Tx (buffer size 256) Compressed Block Ack Rx (buffer size 512) Compressed Block Ack Tx (buffer size 512) DL MU-MIMO EMLSR (Enhanced Multilink Single-Radio) EPCS (Emergency Preparedness Communications Services) priority access LDPC Rx LDPC Tx Load Balancing in MLO MCS 8-9 Rx MCS 8-9 Tx MCS 10-11 Rx MCS 10-11 Tx MCS 12-13 Rx MCS 12-13 Tx Multi-link reconfiguration - AP removal Multi-link reconfiguration - AP restart Multi-RU Operating mode indication Operating mode indication for 320 MHz Static puncturing STR (Simultaneous Transmit and Receive) SU-MIMO Triggered uplink access optimization UL MU-MIMO **UL OFDMA**

Wi-Fi CERTIFIED 7™

© 2024 Juniper Networks

Juniper Confidential



So, Do we need mGig for AP uplink?

Facts of life:


- Today most APs utilize <100 Mbps aggregate (dual band APs)
- Will burst up to 200-500 Mbps depending on channel bandwidth
- Generally need 100 MHz of spectrum to exceed 1 Gbps of real world burst throughput

So, mGig is not mandatory for Wi-Fi 7, but it is the best chance yet of exceeding 1 Gbps in the real world

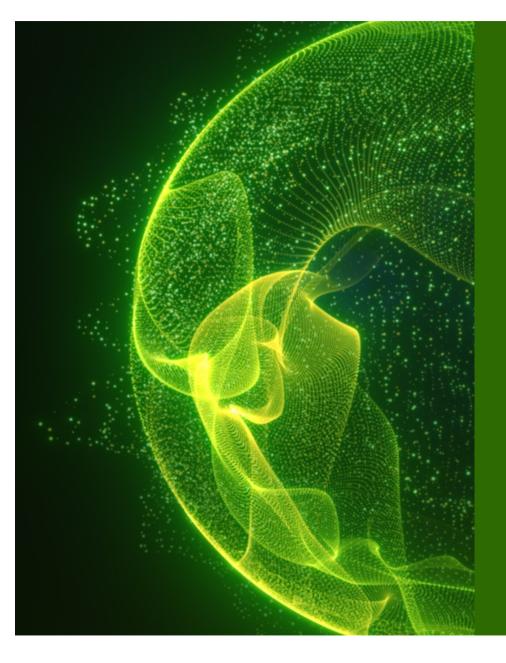
Powering Devices

• Assume .3bt power

Connected Switch Pr	operties		Connected Switch Pre	operties
Switch Name	AP45-EX4400-SW		Switch Name	ex2300- 1_tiny_svr_closet
Switch Description	Juniper Networks, Inc. ex4400-24mp Ethernet Switch, kernel JUNOS 21.2R1.10, Build date: 2021-06-21 17:07:11 UTC Copyright (c) 1996- 2021 Juniper Networks, Inc.	\rightarrow	Switch Description	Juniper Networks, Inc. ex2300-48mp Ethernet Switch, kernel JUNOS 18.4R2.7, Build date: 2019-06-27 10:13:52 UTC Copyright (c) 1996- 2019 Juniper Networks, Inc.
LLDP Neighbor Address	192.168.3.1		LLDP Neighbor Address	10.85.15.239
Port ID	mge-0/0/12		Port ID	mge-0/0/30
Port Description	mge-0/0/12		Port Description	mge-0/0/30
LLDP-MED Supported	Yes		LLDP-MED Supported	Yes
Power Request Count	1			
Power Allocated	31.1 W		Power Request Count	
Power Requested	31.1 W		Power Allocated	30 W
Power Required	31.1 W		Power Requested	31.1 W
. oner negurea			Power Required	31.1 W

6 GHz Transmit Power

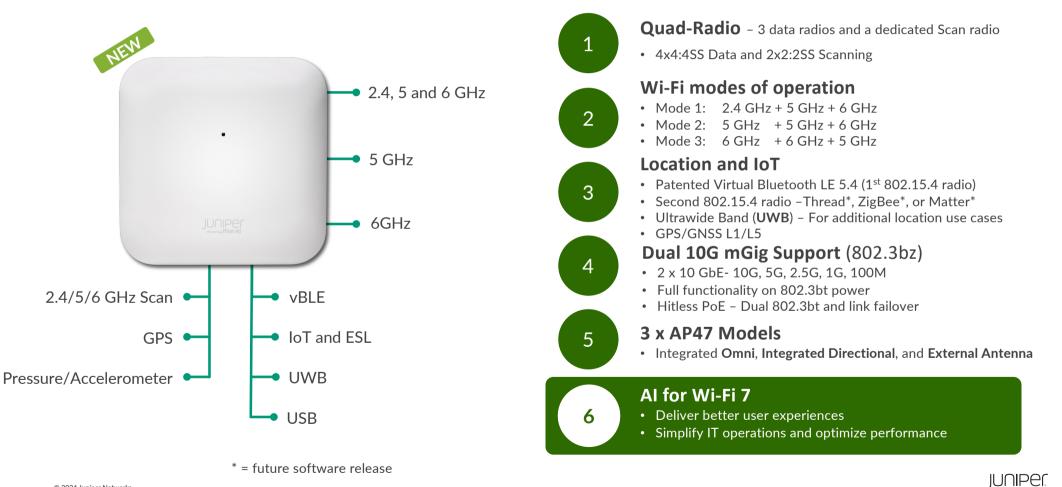
slightly denser network than in the past


WPA3 Requirements – Migrating to WPA3 and OWE

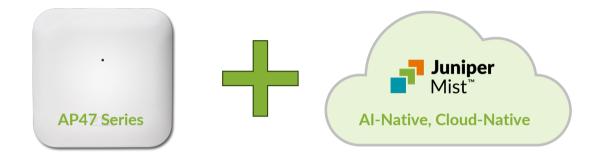
WPA3 is required by the Wi-Fi Alliance for Wi-Fi 7 certifications and 6 GHz Operation only supported with WPA3 or OWE

WPA3 Enterprise	WPA3 Personal	OWE
 Ultra Low Risk Safe and easy to enable (especially transition) 	 Low-ish Risk Old devices may encounter interop issues with transition mode MPSK Limited 	 Low Risk Probably need to use transition mode due to device support

Note: you can enable WPA3 or OWE even before you have 6 GHz APs, and probably should



Juniper Wi-Fi 7


Expanding Portfolio with AI for Wi-Fi 7

Juniper AP47, driven by Mist AI[™]

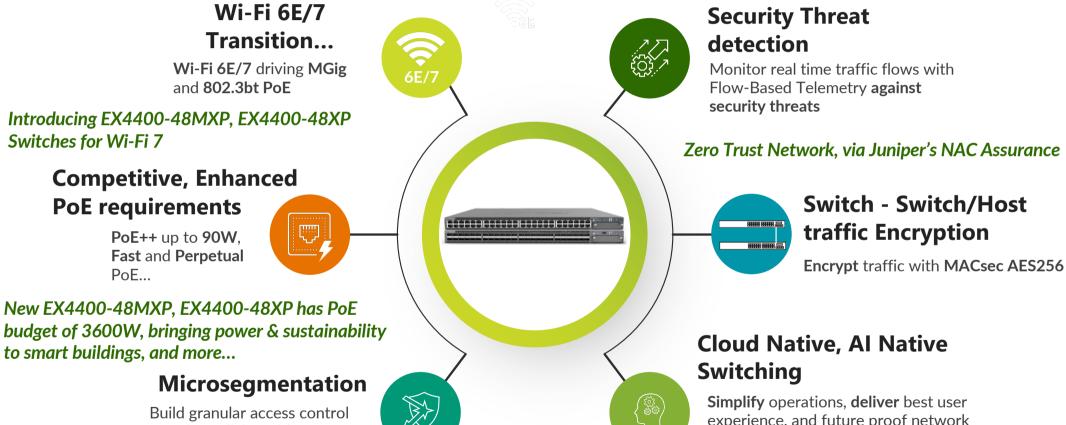
Juniper Confidential

Why Juniper Mist? hint it's more than just hardware...

AI-NATIVE

- Al-Driven RRM for dynamically managing capacity complexities of old and new spectrum; dynamic power save modes
- Dynamically downloadable **Minis** built-in for user experience anomaly detection
- Integrated **CUEL agents** continually enhance experience models

AIoT-DRIVEN


- Al-Driven RRM optimizes spectrum capacity beyond Wi-Fi for IoT
- vBLE and **Unsupervised Machine Learning** enable location-based services use cases across verticals
- Built-in **sensors** augment hyperlocation use cases

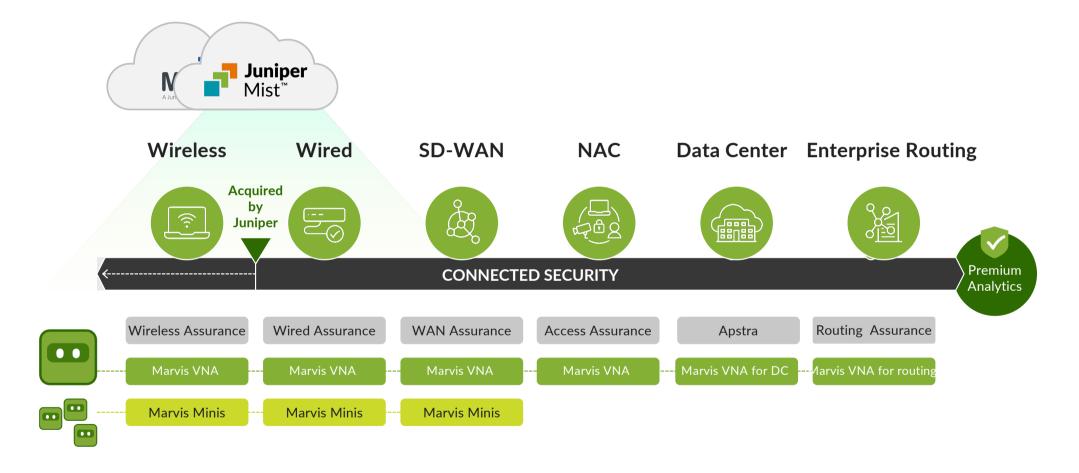
CLOUD-NATIVE

- 150+ client event states monitored
- Massive horizontal and vertical elastic scale, high performance
- Microservices agility delivers enhancements on a weekly basis

Future Proof with Juniper's Campus Access Switching

Juniper's EX Switching Portfolio Capabilities

Build granular access control security policies with EVPN-VXLAN and Group Based Policy


© 2024 Juniper Networks

Juniper Confidential

Simplify operations, deliver best user experience, and future proof network with scale & agility, via Mist Al -- Marvis and Wired Assurance.

Al for Networking: Only common cloud and VNA across all enterprise domains

JUNIPER

Thank you

JUNPER .

The NSW Way to Wi-Fi

