Quantum Cryptography and European Testbeds

XIV jornadas REDIMadrid

Universidad Rey Juan Carlos
Madrid, 22 Octubre 2019

Vicente Martin,
Vicente@fi.upm.es
Index.

- Why Quantum Cryptography? Do we have a problem?
- Brief Intro to Quantum Key Distribution
- QKD and networks.
- Software Defined Networking and the Madrid Quantum Network
- OpenQKD: European QKD Testbeds
- Future
Quantum Computing and Quantum Crypto: Do we have a problem?

- **Quantum computers break**, in polynomial time, the most used algorithms for public key cryptography and key distribution.
 - RSA
 - Elliptic curve cryptography
 - Diffie–Hellman

- But, you know, building a quantum computer **will take forever**…
 - Or, at least, so many years that you do not need to worry…
Z: Time to a quantum computer: ?
Y: Time to fully change the security infrastructure: Estimate (NIST) 20yrs.
X: Shelf life: 1–50 yrs. (what is your application?)

If X+Y > Z... you have problems.
Solutions:

- Postquantum crypto: Business as usual.
 - “new” algorithms believed to be secure against Quantum Computers.

- Quantum Cryptography:
 - Physical layer security → Networks
 - You need hardware
 - … and it is not easy
 - Not a complete substitute! (symmetric crypto)
El Qubit.

- Definamos dos estados cuánticos como 0 y 1: |0⟩ y |1⟩
 - |0⟩ significa “el estado cuántico que representa al valor 0 del qubit”... Sea cual sea su implementación física: la polarización de un fotón, estados de espín...
- Un estado genérico de un qubit se escribe: |φ⟩ = α|0⟩ + β|1⟩
- Lectura (medida):
 - (α² + β² = 1)
 - Nótese que la lectura modifica el estado del qubit.
- Teorema de la No-clonación: No se puede copiar un estado cuántico desconocido.
Ingredientes:

- Un emisor de qubits (típicamente fotones) individuales (Alice)
- Receptores de qubits individuales (Bob)
- Un canal cuántico (capaz de transmitir los qubits de Alice a Bob)
- Un canal clásico (público pero autenticado)
- … y un espía (Eve)
Ingredientes:

- Un **emisor de qubits** (típicamente fotones) individuales (Alice)
- **Receptores** de qubits individuales (Bob)
- Un **canal cuántico** (capaz de transferir los qubits de Alice a Bob)
- Un **canal clásico** (público pero auténtico)
- ... y un espía (Eve)
Quantum communications and networks, why is it difficult?

Limited reach, point to point.

- Extremely weak signals.
- Difficult to detect.
- Absorptions
- Masked by the noise

Noise in the fibre: Raman

Single photon (approx. scale)

Comm. laser

Single photon (not to scale)

$\Delta \lambda = 0.2 \sim 0.8 \text{ nm (DWDM)}$
$\Delta \lambda = 3 \sim 20 \text{ nm (CWDM)}$

Raman backscattering of a signal at 1549 nm [DOI: 10.1063/1.1842862]
Quantum communications and networks, why is it difficult?

- Difficult to detect.
- Absorptions
- Masked by the noise

Limited reach/losses
(~30 dB, 150 km)
(recent experiments with ~60 dB, but in the end losses will dominate)

Noise in the fibre: Raman

Raman backscattering of a signal at 1549 nm [DOI: 10.1063/1.1842862]
Quantum communications and networks, why is it difficult?

Limited reach, point to point.

- $\Delta \lambda = 0.2\text{~to~}0.8 \text{~nm (DWDM)}$
- $\Delta \lambda = 3\text{~to~}20 \text{~nm (CWDM)}$

Comm. laser

Single photon

(extremely weak signals.)

Noise in the fibre: Raman

- $\mu = 0.5$
- $\mu = 0.1$

150 nm

- $\Delta \lambda = 0.2\text{~to~}0.8 \text{~nm}$

Limited reach/losses

- (~30 dB, 150 km)
- (recent experiments with ~60 dB, but in the end losses will dominate)

Trusted nodes are required

(security issues)

- Absorptions
- Masked by the noise

Single Photon (approx. scale)

Raman backscattering of a signal at 1549 nm [DOI: 10.1063/1.1842862]
Quantum communications and networks, why is it difficult?

Limited reach, point to point.

Δλ = 0.2~0.8 nm (DWDM)
Δλ = 3~20 nm (CWDM)

Comm. laser

Single photon
(not to scale)

Extremely weak signals.

Noise in the fibre: Raman

Quantum communications and networks, why is it difficult?

- Difficult to detect.
- Absorptions
- Masked by the noise

Limited reach/losses (~30 dB, 150 km)

Low tolerance to noise

Single Photon
(approx. scale)

Raman backscattering of a signal at 1549 nm [DOI: 10.1063/1.1842862]
Quantum communications and networks, why is it difficult?

- Limited reach, point to point.

- Single photon (very weak signals).

- Noise in the fibre: Raman backscattering of a signal at 1549 nm [DOI: 10.1063/1.1842862]

- Single photon (approx. scale)

- Limited reach/losses (~30 dB, 150 km)

- Low tolerance to noise

- Quantum/classical co-propagation issues (not sharing the infrastructure → Expensive!!)
Quantum communications and networks, why is it difficult?

- Limited reach, point to point. (~30 dB, 150 km)
- Extremely weak signals.
- Low tolerance to noise (~30 dB, 150 km)
- Noise in the fibre: Raman

- Difficult to detect.
- Absorptions
- Masked by the noise

Single photon (approx. scale)
Quantum communications and networks, why is it difficult?

- Ad-hoc network: Large Up-front costs
- Limited range: Security model requires trusted nodes

It is a delicate technology.

Noise in the fibre: Raman

\[\Delta \lambda = 0.2 \sim 0.8 \text{ nm (DWDM)} \]
\[\Delta \lambda = 3 \sim 20 \text{ nm (CWDM)} \]

\[\text{Raman backscattering of a signal at 1549 nm} \quad [\text{DOI: 10.1063/1.1842862}] \]
Estudiar la integración de QKD en redes de comunicaciones en coexistencia con señales clásicas y con equipos convencionales (2009)
What to do? Extreme “ad hoc” network

- A network just for quantum.
 - Including “all channels”: Quantum, service and distillation.
 - No trusted nodes (metro area)
 - Addressable: The emitter can decide whom to talk to by choosing the wavelength.
 - As many users as possible (dem. 64)
 - Use as much deployed infrastructure and commercial equipment as possible.

- Quantum metropolitan optical network based on wavelength division multiplexing, Optics Express 22, 1576-1593, 2014 (arXiv:1309.3923)
What to do? Madrid Quantum Network: First SDN–QKD network in the world

Use the correct technology

- **SDN** – Software Defined Networking
 - Network Flexibility
- **CV–QKD** technology:
 - Better tolerance to noise: quantum/classical copropagation.
 - Prospective industrialization path

Real world use cases:

- **EU H2020 Grant 820466**
- **Site A**
- **Site B**
- **SDN**
- **Alice**
- **Bob1**
- **Bob2**

Use the correct technology.
Key structure: SD–QKD–Node Abstraction
Key structure: SD-QKD-Node Abstraction

ISG-QKD 004 “Application Interface”

ISG-QKD 015 “Quantum Key Distribution Control Interface for Software Defined Networks”

ETSI: Industry Specification Group on QKD.

NW people is familiar with this way of doing things.
Global view of the SDQKD Network

The SDN controller manages the Requirements of the quantum and Classical devices to optimize the network.

Key points
- Dynamical connections
- Integrated in a classical network
- Part of a security ecosystem
These ideas have been implemented connecting three production sites of Telefónica Spain in Downtown Madrid.

SDN controller: Manages the network. Quantum systems in A can be connected with B or C according to the controller’s policies.

CV systems (telco–friendly)

The connection with the rest is completely standard.

The connection to the network is through standard Communications systems. (Huawei OSN 1800)

CV QKD Systems: Huawei Technologies Dusseldorf
Currently up to 17 copropagating classical channels with the quantum channel.

- Classical channels in the same band (C-band ITU grid)

- Limited only because of the number of free ports in the OSN.

- 100 Gbps \times 17 = 1.7 \text{Tbps} classical.

- Quantum 20–70 kbps max. (dependent on the link and key distillation)
3. Madrid SDN QKD Network

First Quantum SDN Network in the world.
Installed in Telefónica Spain production facilities.

Relevance:

- Integration in real world networks.
 - Logical & physical level.
- Deployment.
- Scalability.
- Relevant industrial cases.
Evolution: European Testbeds. The OpenQKD project

- European Open QKD Network
- Testbeds to **demonstrate** the feasibility and maturity of Quantum Communications technologies.
Quantum Key Distribution
- a technology offering security in the quantum age
- so far only isolated demos on technological level
- slow take up and low visibility due to lack of understanding and risk-aversion

Need an integrated approach to
- Raise awareness of QKD in security applications
- Demonstrate seamless integration into current networks and security architectures
- Show the benefit of QKD for a wide range of real world use-cases
- Involve whole supply chain from manufacturers to end-users
- Set standards for large scale deployment opportunities

Realised in OPENQKD
OPENQKD eco system

- QKD suppliers
- QKD R&D partners
- QKD network developers
- Suppliers of network encryption
- Fiber infrastructure operators
- Telecom operators
- Aerospace and satellite industry
- Standardisation institutes
- Early adopters

38 Partners, 15 M€ (funding)
18 M€ (cost)
Objectives: Use cases

Operation of use-cases deriving from Secure Societies needs:

- Demonstration of more than 30 use-cases for QKD featuring:
 - realistic operating environments
 - end-user applications and support

Range of use-cases:

- Secure and digital societies
 - Inter/Intra datacenter comm., e-Government, High-Performance computing, financial services, authentication and space applications, integration with post-quantum cryptography

- Healthcare
 - Secure cloud storage services and securing patient data in transit

- Critical infrastructure
 - QKD for telecom networks, 5G infrastructure and securing smart grids
Kick-start a competitive European QKD industry

- Industry standard QKD devices (high maturity); 23 devices operational in OPENQKD
- Next generation QKD systems based on new protocols and novel implementations:
 - Long distance QKD
 - MDI QKD
 - Twin Field QKD
 - Low cost CV-QKD
 - Hand-held QKD
 - Access QKD

- Adaptation of network encryption devices for QKD operation; 30 encryptors in OPENQKD
- End-user workshops to raise awareness of security industry
- Staff training to foster know-how on QKD deployment and operation at test sites
Open calls scheme to bring-in externally defined use cases. (1M€)

- Continuous call (evaluated 4 times during the lifetime of the Project)
Objectives: Pan-European Quantum Network

- Lay the foundations for a Pan-European Quantum Network
 - 4 large testbed sites and 12 demonstrator sites in 12 European countries
 - Long distance cross-border links
 - Testbed for free space QKD
 - Test GEANT fiber infrastructure for a future large scale quantum communication network
 - Study of satellite QKD and development of interfaces to terrestrial QKD networks
16 OPENQKD test sites

- Madrid ES
 Telecom
- Berlin DE
 Telecom
- Posnan PL
 Government
- Vienna AT
 Government
- Delft NL
 MDI QKD
- Cambridge UK
 Data Centers
- Paris FR
 Academic network
- Geneva CH
 Smart Grid
- Oberpfaffenhofen DE
 Satellite QKD
- Barcelona ES
 Video Com
- Bratislava CZ
 Government
- Ostrava CZ
 High Perf. Comp.
- Graz AT
 Healthcare
- Padua IT
 Free-space QKD
- Matera IT
 Satellite QKD
- Athens GR
 Data Com

Large geographic reach-out
Evolution of the Madrid Quantum Network.

Partners: RedIMadrid, UPM, Telefónica.

8 predefined use cases.

Key use cases: SDN based (but also traditional)

Start: 2–4 links installed in November.

Up to 9 links for the largest demonstrations.

Distances 3–50 Km
Inner City link

Vienna

Test bed partners: AIT, OEAW, FRX

Node locations: 8 (AIT, 2 IXPs, 5 Federal Ministries)

QKD Links: 7 AIT-IXP2-IXP1, IXP1-end users (star)

Link encryptors: 2 layer-1, 5 layer-2

Distances: 3-10km;

SDQN: optical switching of QKD terminals at IXP1

Coexistence: 2 dark fibers, 5 lit fibers

Use case demos: Secure distribution and cloud storage of government data

Start: Month 12

Duration: 12 months (incl. cross border)
Testbed Vienna II

Cross-Border link
Vienna – Bratislava
Test bed partners: AIT, OEAW

Links: Distance 70 km; 1-2 links (dark fiber) from Vienna (IXP1) to Bratislava, 1 inner city link in Bratislava to Austrian diplomatic mission

Start: Month 18

Duration: 4 months

TRI-STAR link (extension to OPENQKD)
Vienna – Bratislava – Graz
Test bed partners: AIT, OEAW, CYC, ASFINAG (ex)

Case study for QCI network structures

Links: 2-3 links for Vienna-Graz, 2 extra links to connect inner city locations to fibers along motorway

Start: Month 24

Duration: 4 months
Ten years plan to "make available a quantum communication infrastructure in Europe, to boost European capabilities in quantum technologies, cybersecurity and industrial competitiveness."

Agreement recently signed by 9 member states (Sept. 2019)

OpenQKD Project is considered the ramp–up phase of the QCI

Source: TU Delft/Scixel
A. Aguado¹, P. Salas¹, A.L. Sanz¹, J.P. Brito¹, R. Brito¹, R. Vicente¹, D. R. Lopez², V. Lopez², A. Pastor², V. Martin¹

¹Center for Computational Simulation and ETSI Informáticos, Universidad Politécnica de Madrid 28660 Madrid, Spain
²Telefónica Investigación y Desarrollo, Ronda de la Comunicación s/n 28050 Madrid, Spain

EMU H2020 Grant 820466 EU H2020 Grant 857156

Comunidad de Madrid S2018/TCS-4342

CvQuCo - MINECO/FEDER TEC2015-70406-R

 Thanks!... Questions/comments?

Vicente Martin
U. Politécnica de Madrid
Vicente@fi.upm.es
gcc.fi.upm.es